Mplus VERSION 8.6
MUTHEN & MUTHEN
07/20/2021 5:59 PM

OUTPUT SECTIONS


INPUT INSTRUCTIONS

  TITLE: 7.1 LGM Modèle linéaire (Notation classique)

  DATA:
      FILE = Cortisol.dat ;
      LISTWISE = ON ;

  VARIABLE:
      NAMES =
      SID C1 C2 C3 C4
      SEXE TTT CREVEIL
      T1 T2 T3 T4
      TC1 TC2 TC3 TC4
      FCT ;

      USEVARIABLES =  C1 C2 C3 C4 ;

  ANALYSIS:  	
  ESTIMATOR = MLR ;

  MODEL:	
  i BY C1-C4@1 ;
  s BY C1@0 C2@1 C3@2 C4@3 ;	
  i WITH s ;






INPUT READING TERMINATED NORMALLY



7.1 LGM Modèle linéaire (Notation classique)

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                         101

Number of dependent variables                                    4
Number of independent variables                                  0
Number of continuous latent variables                            2

Observed dependent variables

  Continuous
   C1          C2          C3          C4

Continuous latent variables
   I           S


Estimator                                                      MLR
Information matrix                                        OBSERVED
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20

Input data file(s)
  Cortisol.dat

Input data format  FREE



UNIVARIATE SAMPLE STATISTICS


     UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS

         Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
        Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median

     C1                   10.412       1.383       1.205    0.99%       4.540      7.500      9.168
             101.000      45.592       2.806      36.490    0.99%      10.490     15.275
     C2                   10.189       1.502       1.380    0.99%       5.190      6.885      8.637
             101.000      36.375       2.786      33.265    0.99%      10.520     14.420
     C3                    6.393       2.088       1.825    0.99%       3.225      4.150      4.635
             101.000      22.701       4.553      27.110    0.99%       5.155      8.620
     C4                    3.706       2.704       1.370    0.99%       2.170      2.880      3.123
             101.000       5.026       9.698      15.955    0.99%       3.335      4.630


     THIS ANALYSIS MAY HAVE MULTIPLE SOLUTIONS.  EXPLORE THIS USING RANDOM STARTS,
     FOR EXAMPLE, STARTS = 20.  USE A LARGE ENOUGH NUMBER OF STARTS SO THAT THE
     BEST FIT FUNCTION VALUE IS REPLICATED SEVERAL TIMES.


THE MODEL ESTIMATION TERMINATED NORMALLY

     WARNING:  THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.
     THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED
     VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED
     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.
     CHECK THE RESULTS SECTION FOR MORE INFORMATION.
     PROBLEM INVOLVING VARIABLE C4.




MODEL FIT INFORMATION

Number of Free Parameters                       11

Loglikelihood

          H0 Value                       -1165.692
          H0 Scaling Correction Factor      1.9556
            for MLR
          H1 Value                       -1161.416
          H1 Scaling Correction Factor      1.7889
            for MLR

Information Criteria

          Akaike (AIC)                    2353.385
          Bayesian (BIC)                  2382.151
          Sample-Size Adjusted BIC        2347.408
            (n* = (n + 2) / 24)

Chi-Square Test of Model Fit

          Value                              7.261*
          Degrees of Freedom                     3
          P-Value                           0.0640
          Scaling Correction Factor         1.1779
            for MLR

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.119
          90 Percent C.I.                    0.000  0.232
          Probability RMSEA <= .05           0.120

CFI/TLI

          CFI                                0.884
          TLI                                0.769

Chi-Square Test of Model Fit for the Baseline Model

          Value                             42.868
          Degrees of Freedom                     6
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.088



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 I        BY
    C1                 1.000      0.000    999.000    999.000
    C2                 1.000      0.000    999.000    999.000
    C3                 1.000      0.000    999.000    999.000
    C4                 1.000      0.000    999.000    999.000

 S        BY
    C1                 0.000      0.000    999.000    999.000
    C2                 1.000      0.000    999.000    999.000
    C3                 2.000      0.000    999.000    999.000
    C4                 3.000      0.000    999.000    999.000

 I        WITH
    S                 -9.804      3.124     -3.139      0.002

 Intercepts
    C1                10.412      0.672     15.497      0.000
    C2                10.189      0.600     16.979      0.000
    C3                 6.393      0.474     13.486      0.000
    C4                 3.706      0.223     16.611      0.000

 Variances
    I                 27.910      9.393      2.971      0.003
    S                  4.065      1.099      3.699      0.000

 Residual Variances
    C1                17.438      6.926      2.518      0.012
    C2                21.018      5.238      4.012      0.000
    C3                20.779      5.915      3.513      0.000
    C4                -0.650      1.551     -0.419      0.675


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.143E-03
       (ratio of smallest to largest eigenvalue)


DIAGRAM INFORMATION

  Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram.
  If running Mplus from the Mplus Diagrammer, the diagram opens automatically.

  Diagram output
    c:\project\mpluslivre\stx\chapitres\chapitre_07\script7.1.dgm

     Beginning Time:  17:59:31
        Ending Time:  17:59:31
       Elapsed Time:  00:00:00



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen