Mplus VERSION 8.6
MUTHEN & MUTHEN
07/20/2021 6:19 PM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: 7.11 LGM Modèle en base latente DATA: FILE = Cortisol.dat ; LISTWISE = ON ; VARIABLE: NAMES = SID C1 C2 C3 C4 SEXE TTT CREVEIL T1 T2 T3 T4 TC1 TC2 TC3 TC4 FCT ; USEVARIABLES = C1 C2 C3 C4 ; ANALYSIS: ESTIMATOR = MLR ; STARTS = 20 ; MODEL: i s | C1@0 C2* C3* C4@1 ; C4@0 ; !fixer la variance résiduelle à zéro OUTPUT: SAMPSTAT STDYX TECH4 ; PLOT: TYPE = PLOT3 ; SERIES = C1-C4 (*) ; INPUT READING TERMINATED NORMALLY 7.11 LGM Modèle en base latente SUMMARY OF ANALYSIS Number of groups 1 Number of observations 101 Number of dependent variables 4 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous C1 C2 C3 C4 Continuous latent variables I S Estimator MLR Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Random Starts Specifications Number of random starts 20 Random starts scale 0.500D+01 Input data file(s) Cortisol.dat Input data format FREE SAMPLE STATISTICS SAMPLE STATISTICS Means C1 C2 C3 C4 ________ ________ ________ ________ 10.412 10.189 6.393 3.706 Covariances C1 C2 C3 C4 ________ ________ ________ ________ C1 45.592 C2 22.137 36.375 C3 0.437 3.455 22.701 C4 -1.599 0.641 3.507 5.026 Correlations C1 C2 C3 C4 ________ ________ ________ ________ C1 1.000 C2 0.544 1.000 C3 0.014 0.120 1.000 C4 -0.106 0.047 0.328 1.000 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median C1 10.412 1.383 1.205 0.99% 4.540 7.500 9.168 101.000 45.592 2.806 36.490 0.99% 10.490 15.275 C2 10.189 1.502 1.380 0.99% 5.190 6.885 8.637 101.000 36.375 2.786 33.265 0.99% 10.520 14.420 C3 6.393 2.088 1.825 0.99% 3.225 4.150 4.635 101.000 22.701 4.553 27.110 0.99% 5.155 8.620 C4 3.706 2.704 1.370 0.99% 2.170 2.880 3.123 101.000 5.026 9.698 15.955 0.99% 3.335 4.630 RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST FIT FUNCTION VALUES Fit function values at local maxima and random start numbers: 7.3048 3 7.3048 13 7.3048 4 7.3048 17 7.3048 12 7.3048 14 7.3048 unperturbed 7.3048 1 7.3048 15 7.3048 18 7.3048 8 7.3048 2 7.3048 20 8 starting value run(s) did not converge. MODEL FIT INFORMATION Number of Free Parameters 10 Loglikelihood H0 Value -1165.069 H0 Scaling Correction Factor 2.1216 for MLR H1 Value -1161.416 H1 Scaling Correction Factor 1.7889 for MLR Information Criteria Akaike (AIC) 2350.137 Bayesian (BIC) 2376.288 Sample-Size Adjusted BIC 2344.704 (n* = (n + 2) / 24) Chi-Square Test of Model Fit Value 7.630* Degrees of Freedom 4 P-Value 0.1061 Scaling Correction Factor 0.9574 for MLR * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Estimate 0.095 90 Percent C.I. 0.000 0.196 Probability RMSEA <= .05 0.192 CFI/TLI CFI 0.902 TLI 0.852 Chi-Square Test of Model Fit for the Baseline Model Value 42.868 Degrees of Freedom 6 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.080 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value I | C1 1.000 0.000 999.000 999.000 C2 1.000 0.000 999.000 999.000 C3 1.000 0.000 999.000 999.000 C4 1.000 0.000 999.000 999.000 S | C1 0.000 0.000 999.000 999.000 C2 0.068 0.073 0.926 0.355 C3 0.683 0.072 9.530 0.000 C4 1.000 0.000 999.000 999.000 S WITH I -22.386 8.480 -2.640 0.008 Means I 10.628 0.653 16.276 0.000 S -6.923 0.707 -9.786 0.000 Intercepts C1 0.000 0.000 999.000 999.000 C2 0.000 0.000 999.000 999.000 C3 0.000 0.000 999.000 999.000 C4 0.000 0.000 999.000 999.000 Variances I 21.883 8.346 2.622 0.009 S 27.915 8.962 3.115 0.002 Residual Variances C1 22.952 6.090 3.769 0.000 C2 16.250 4.841 3.357 0.001 C3 20.317 5.967 3.405 0.001 C4 0.000 0.000 999.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.829E-03 (ratio of smallest to largest eigenvalue) STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value I | C1 0.699 0.088 7.902 0.000 C2 0.788 0.120 6.586 0.000 C3 0.942 0.199 4.727 0.000 C4 2.087 0.543 3.843 0.000 S | C1 0.000 0.000 999.000 999.000 C2 0.060 0.071 0.846 0.397 C3 0.727 0.202 3.590 0.000 C4 2.357 0.481 4.901 0.000 S WITH I -0.906 0.040 -22.405 0.000 Means I 2.272 0.364 6.245 0.000 S -1.310 0.186 -7.052 0.000 Intercepts C1 0.000 0.000 999.000 999.000 C2 0.000 0.000 999.000 999.000 C3 0.000 0.000 999.000 999.000 C4 0.000 0.000 999.000 999.000 Variances I 1.000 0.000 999.000 999.000 S 1.000 0.000 999.000 999.000 Residual Variances C1 0.512 0.124 4.144 0.000 C2 0.461 0.127 3.619 0.000 C3 0.824 0.042 19.423 0.000 C4 0.000 999.000 999.000 999.000 R-SQUARE Observed Two-Tailed Variable Estimate S.E. Est./S.E. P-Value C1 0.488 0.124 3.951 0.000 C2 0.539 0.127 4.227 0.000 C3 0.176 0.042 4.136 0.000 C4 1.000 999.000 999.000 999.000 TECHNICAL 4 OUTPUT ESTIMATES DERIVED FROM THE MODEL ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 10.628 -6.923 S.E. FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 0.653 0.707 EST./S.E. FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 16.276 -9.786 TWO-TAILED P-VALUE FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 0.000 0.000 ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 21.883 S -22.386 27.915 S.E. FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 8.346 S 8.480 8.962 EST./S.E. FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 2.622 S -2.640 3.115 TWO-TAILED P-VALUE FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.009 S 0.008 0.002 ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 1.000 S -0.906 1.000 S.E. FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.000 S 0.040 0.000 EST./S.E. FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 999.000 S -22.405 999.000 TWO-TAILED P-VALUE FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.000 S 0.000 0.000 SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES SAMPLE STATISTICS Means I I_SE S S_SE ________ ________ ________ ________ 10.628 2.601 -6.923 2.601 Covariances I I_SE S S_SE ________ ________ ________ ________ I 15.117 I_SE 0.000 0.000 S -15.620 0.000 21.149 S_SE 0.000 0.000 0.000 0.000 Correlations I I_SE S S_SE ________ ________ ________ ________ I 1.000 I_SE 999.000 1.000 S -0.874 999.000 1.000 S_SE 999.000 999.000 999.000 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores, estimated values, residuals) Scatterplots (sample values, estimated factor scores, estimated values, residuals) Sample means Estimated means Sample and estimated means Latent variable distribution plots Observed individual values Estimated individual values DIAGRAM INFORMATION Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram. If running Mplus from the Mplus Diagrammer, the diagram opens automatically. Diagram output c:\project\mpluslivre\stx\chapitres\chapitre_07\script7.11.dgm Beginning Time: 18:19:42 Ending Time: 18:19:43 Elapsed Time: 00:00:01 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen