Mplus VERSION 8.6
MUTHEN & MUTHEN
07/20/2021 6:00 PM
OUTPUT SECTIONS
INPUT INSTRUCTIONS TITLE: 7.3 LGM Modèle linéaire (ajout PLOT & OUTPUT) DATA: FILE = Cortisol.dat ; LISTWISE = ON ; VARIABLE: NAMES = SID C1 C2 C3 C4 SEXE TTT CREVEIL T1 T2 T3 T4 TC1 TC2 TC3 TC4 FCT ; USEVARIABLES = C1 C2 C3 C4 ; ANALYSIS: ESTIMATOR = MLR ; MODEL: i s | C1@0 C2@1 C3@2 C4@3 ; OUTPUT: SAMPSTAT STDYX TECH4 ; PLOT: TYPE = PLOT3 ; SERIES = C1-C4 (s) ; INPUT READING TERMINATED NORMALLY 7.3 LGM Modèle linéaire (ajout PLOT & OUTPUT) SUMMARY OF ANALYSIS Number of groups 1 Number of observations 101 Number of dependent variables 4 Number of independent variables 0 Number of continuous latent variables 2 Observed dependent variables Continuous C1 C2 C3 C4 Continuous latent variables I S Estimator MLR Information matrix OBSERVED Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Input data file(s) Cortisol.dat Input data format FREE SAMPLE STATISTICS SAMPLE STATISTICS Means C1 C2 C3 C4 ________ ________ ________ ________ 10.412 10.189 6.393 3.706 Covariances C1 C2 C3 C4 ________ ________ ________ ________ C1 45.592 C2 22.137 36.375 C3 0.437 3.455 22.701 C4 -1.599 0.641 3.507 5.026 Correlations C1 C2 C3 C4 ________ ________ ________ ________ C1 1.000 C2 0.544 1.000 C3 0.014 0.120 1.000 C4 -0.106 0.047 0.328 1.000 UNIVARIATE SAMPLE STATISTICS UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS Variable/ Mean/ Skewness/ Minimum/ % with Percentiles Sample Size Variance Kurtosis Maximum Min/Max 20%/60% 40%/80% Median C1 10.412 1.383 1.205 0.99% 4.540 7.500 9.168 101.000 45.592 2.806 36.490 0.99% 10.490 15.275 C2 10.189 1.502 1.380 0.99% 5.190 6.885 8.637 101.000 36.375 2.786 33.265 0.99% 10.520 14.420 C3 6.393 2.088 1.825 0.99% 3.225 4.150 4.635 101.000 22.701 4.553 27.110 0.99% 5.155 8.620 C4 3.706 2.704 1.370 0.99% 2.170 2.880 3.123 101.000 5.026 9.698 15.955 0.99% 3.335 4.630 THIS ANALYSIS MAY HAVE MULTIPLE SOLUTIONS. EXPLORE THIS USING RANDOM STARTS, FOR EXAMPLE, STARTS = 20. USE A LARGE ENOUGH NUMBER OF STARTS SO THAT THE BEST FIT FUNCTION VALUE IS REPLICATED SEVERAL TIMES. THE MODEL ESTIMATION TERMINATED NORMALLY WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES. CHECK THE RESULTS SECTION FOR MORE INFORMATION. PROBLEM INVOLVING VARIABLE C4. MODEL FIT INFORMATION Number of Free Parameters 9 Loglikelihood H0 Value -1172.392 H0 Scaling Correction Factor 2.1973 for MLR H1 Value -1161.416 H1 Scaling Correction Factor 1.7889 for MLR Information Criteria Akaike (AIC) 2362.783 Bayesian (BIC) 2386.319 Sample-Size Adjusted BIC 2357.893 (n* = (n + 2) / 24) Chi-Square Test of Model Fit Value 20.828* Degrees of Freedom 5 P-Value 0.0009 Scaling Correction Factor 1.0539 for MLR * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Estimate 0.177 90 Percent C.I. 0.103 0.259 Probability RMSEA <= .05 0.004 CFI/TLI CFI 0.571 TLI 0.485 Chi-Square Test of Model Fit for the Baseline Model Value 42.868 Degrees of Freedom 6 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.105 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value I | C1 1.000 0.000 999.000 999.000 C2 1.000 0.000 999.000 999.000 C3 1.000 0.000 999.000 999.000 C4 1.000 0.000 999.000 999.000 S | C1 0.000 0.000 999.000 999.000 C2 1.000 0.000 999.000 999.000 C3 2.000 0.000 999.000 999.000 C4 3.000 0.000 999.000 999.000 S WITH I -9.029 3.039 -2.971 0.003 Means I 11.286 0.662 17.047 0.000 S -2.533 0.239 -10.585 0.000 Intercepts C1 0.000 0.000 999.000 999.000 C2 0.000 0.000 999.000 999.000 C3 0.000 0.000 999.000 999.000 C4 0.000 0.000 999.000 999.000 Variances I 25.574 9.128 2.802 0.005 S 3.811 1.081 3.527 0.000 Residual Variances C1 20.622 7.341 2.809 0.005 C2 24.159 6.530 3.699 0.000 C3 20.475 5.931 3.452 0.001 C4 -0.685 1.622 -0.422 0.673 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.161E-03 (ratio of smallest to largest eigenvalue) STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value I | C1 0.744 0.097 7.665 0.000 C2 0.849 0.138 6.173 0.000 C3 1.008 0.176 5.735 0.000 C4 2.257 0.573 3.939 0.000 S | C1 0.000 0.000 999.000 999.000 C2 0.328 0.046 7.052 0.000 C3 0.778 0.112 6.967 0.000 C4 2.614 0.496 5.276 0.000 S WITH I -0.914 0.041 -22.243 0.000 Means I 2.232 0.368 6.063 0.000 S -1.297 0.191 -6.779 0.000 Intercepts C1 0.000 0.000 999.000 999.000 C2 0.000 0.000 999.000 999.000 C3 0.000 0.000 999.000 999.000 C4 0.000 0.000 999.000 999.000 Variances I 1.000 0.000 999.000 999.000 S 1.000 0.000 999.000 999.000 Residual Variances C1 0.446 0.144 3.091 0.002 C2 0.681 0.103 6.625 0.000 C3 0.813 0.059 13.868 0.000 C4 -0.136 999.000 999.000 999.000 R-SQUARE Observed Two-Tailed Variable Estimate S.E. Est./S.E. P-Value C1 0.554 0.144 3.833 0.000 C2 0.319 0.103 3.107 0.002 C3 0.187 0.059 3.186 0.001 C4 Undefined 0.11364E+01 TECHNICAL 4 OUTPUT ESTIMATES DERIVED FROM THE MODEL ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 11.286 -2.533 S.E. FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 0.662 0.239 EST./S.E. FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 17.047 -10.585 TWO-TAILED P-VALUE FOR ESTIMATED MEANS FOR THE LATENT VARIABLES I S ________ ________ 0.000 0.000 ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 25.574 S -9.029 3.811 S.E. FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 9.128 S 3.039 1.081 EST./S.E. FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 2.802 S -2.971 3.527 TWO-TAILED P-VALUE FOR ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.005 S 0.003 0.000 ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 1.000 S -0.914 1.000 S.E. FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.000 S 0.041 0.000 EST./S.E. FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 999.000 S -22.243 999.000 TWO-TAILED P-VALUE FOR ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES I S ________ ________ I 0.000 S 0.000 0.000 SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES SAMPLE STATISTICS Means I I_SE S S_SE ________ ________ ________ ________ 11.287 2.978 -2.533 0.922 Covariances I I_SE S S_SE ________ ________ ________ ________ I 16.707 I_SE 0.000 0.000 S -6.145 0.000 2.962 S_SE 0.000 0.000 0.000 0.000 Correlations I I_SE S S_SE ________ ________ ________ ________ I 1.000 I_SE 999.000 1.000 S -0.874 999.000 1.000 S_SE 999.000 999.000 999.000 1.000 PLOT INFORMATION The following plots are available: Histograms (sample values, estimated factor scores, estimated values, residuals) Scatterplots (sample values, estimated factor scores, estimated values, residuals) Sample means Estimated means Sample and estimated means Latent variable distribution plots Observed individual values Estimated individual values DIAGRAM INFORMATION Use View Diagram under the Diagram menu in the Mplus Editor to view the diagram. If running Mplus from the Mplus Diagrammer, the diagram opens automatically. Diagram output c:\project\mpluslivre\stx\chapitres\chapitre_07\script7.3.dgm Beginning Time: 18:00:11 Ending Time: 18:00:11 Elapsed Time: 00:00:00 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen